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We recently initiated a program directed at the develop-
ment of planar-chiral heterocycles as enantioselective nu-
cleophilic catalysts1 and as chiral ligands for transition
metals.2 These studies provided the first reports of applica-
tions of planar-chiral heterocycles in asymmetric catalysis.
While our earliest work focused on π-bound nitrogen het-
erocycles, more recently we have expanded the scope of our
investigation to include phosphorus heterocycles.3 In this
paper, we describe the synthesis and resolution of a new,
planar-chiral bisphosphine (1), and we establish its utility
in enantioselective catalysis, specifically, in the Rh(I)-
catalyzed asymmetric hydrogenation of dehydroamino acids
(eq 1).

Achiral phosphaferrocene 2, first prepared by Mathey,4,5

serves as the starting point for our synthesis of planar-chiral
bisphosphine 1 (Figure 1).6 Vilsmeier-Haack formylation
of 2 through treatment with N-methylformanilide and POCl3
provides racemic phosphaferrocene 3 in 70% yield.7 Reduc-
tion with LiAlH4 then furnishes alcohol 4 (98%),7 which can
be resolved by chiral HPLC (Chiralcel OD). We have
determined the absolute configuration of enantiopure (+)-4
through X-ray crystallography. Subjection of 4 to a one-pot
chlorination and displacement sequence then affords bis-

phosphine 1 (50% for two steps). It is important to note that
Ganter has recently described the resolution of the Cp
analogue of 3,8 as well as the synthesis and coordination
chemistry of the racemic Cp analogue of 1.9

The asymmetric hydrogenation of dehydroamino acids is
frequently used as a proving ground for new chiral bisphos-
phines,10,11 in part because of the significance of the product
R-amino acids. We have established that, in the presence
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Brassat, L.; Glinsböckel, C.; Ganter, B. Organometallics 1997, 16, 2862-
2867. Deschamps, B.; Ricard, L.; Mathey, F. J. Organomet. Chem. 1997,
548, 17-22.

(10) For recent examples, see: (a) Imamoto, T.; Watanabe, J.; Wada, Y.;
Masuda, H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi, K. J.
Am. Chem. Soc. 1998, 120, 1635-1636. (b) Chan, A. S. C.; Hu, W.; Pai,
C.-C.; Lau, C.-P.; Jiang, Y.; Mi, A.; Yan, M.; Sun, J.; Lou, R.; Deng, J. J.
Am. Chem. Soc. 1997, 119, 9570-9571. (c) Pye, P. J.; Rossen, K.; Reamer,
R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997,
119, 6207-6208.

(11) For reviews, see: (a) Noyori, R. Asymmetric Catalysis in Organic
Synthesis; Wiley: New York, 1994; Chapter 2. (b) Knowles, W. S. Acc. Chem.
Res. 1983, 16, 106-12. (c) Pfaltz, A.; Brown, J. M. In Stereoselective
Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.;
Thieme: New York, 1996; Part D, Section 2.5.1.2. Most of the effective
bisphosphines that have been reported to date have C2 symmetry.

Figure 1. Synthesis of enantiopure planar-chiral bisphosphine
1.

Table 1. Catalytic Asymmetric Hydrogenation in the
Presence of Bisphosphine 1

entry R % ee yield

1 H 87 99
2 Ph 87 95
3 4-OMeC6H4 87 96
4 4-ClC6H4 85 95
5 4-NO2C6H4 79 100
6 Me 88 96
7 Et 96 92
8 i-Pr 90 96
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of planar-chiral phosphaferrocene 1, the [Rh(cod)2]PF6-
catalyzed hydrogenation of methyl R-acetamidocinnamate
proceeds with modest ee in CH2Cl2, but with very good ee
in THF or EtOH (eq 2).12

As illustrated in Table 1, a wide array of dehydroamino
acids are reduced with good to excellent enantioselectivity
under the following conditions: 5% [Rh(cod)2]PF6, 6% 1, 1
atm of H2, EtOH, room temperature.13 An investigation of
a range of cinnamate derivatives reveals an electronic effect
on selectivity for this class of compoundssmore electron-
rich systems furnish higher ee (Table 1, entries 2-5).
â-Alkyl-substituted esters are also reduced stereoselectively
(Table 1, entries 6-8), with methyl R-acetamidobut-2-enoate
providing the highest enantiomeric excess (96% ee; Table
1, entry 7).

Unfortunately, we have not yet been able to obtain a
crystal structure of a rhodium complex of ligand 1. However,
a 31P NMR study of the reaction of [Rh(cod)2]PF6 with 1
equiv of ligand 1 (31P {1H} NMR of 1: δ -61.4 (d, J ) 27
Hz) for phosphole, -11.6 (d, J ) 27 Hz) for tertiary
phosphine) establishes that both phosphines bind to rhodium
(31P {1H} NMR of reaction mixture: δ 22.6 (dd, J ) 28, 172
Hz) for phosphole, 61.8 (dd, J ) 28, 141 Hz) for tertiary
phosphine).

In summary, we have developed a straightforward syn-
thesis and resolution of a new, planar-chiral bisphosphine
(1), and we have described its use in the rhodium-catalyzed
enantioselective hydrogenation of dehydroamino acids. To
the best of our knowledge, this is the first example of the
application of a planar-chiral phosphorus heterocycle in
asymmetric catalysis. In future work, we intend to explore
the utility of this and related chiral ligands in other
transition metal-catalyzed processes.
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(12) The use of counterions other than PF6 (e.g., SbF6, OTf, and BF4)
results in lower enantioselectivities.

(13) General procedure for asymmetric hydrogenation: A 100 mL Schlenk
tube was charged with substrate (0.22 mmol), (-)-1 (6.7 mg, 0.013 mmol),
Rh(cod)2PF6 (5.1 mg, 0.011 mmol), and anhydrous EtOH (6.0 mL). After
three vacuum/H2-refill cycles, the valve to the Schlenk tube was closed. The
reaction mixture was then stirred for 12 h at rt, at which time TLC indicated
that all of the starting material had been consumed. The reaction mixture
was concentrated and then passed through a short column (50:50 EtOAc/
hexane). The ee was determined by chiral GC.
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